Cargando…

Thermal Resistance Variations of Fly Ash Geopolymers: Foaming Responses

This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200–800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng-Yong, Heah, Yun-Ming, Liew, Abdullah, Mohd Mustafa Al Bakri, Hussin, Kamarudin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366939/
https://www.ncbi.nlm.nih.gov/pubmed/28345643
http://dx.doi.org/10.1038/srep45355
Descripción
Sumario:This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200–800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage.