Cargando…

Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Tongtong, Liu, Yingjun, Ding, Tao, Fu, Wai Yuen, Jarman, John, Ren, Christopher Xiang, Kumar, R. Vasant, Oliver, Rachel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366952/
https://www.ncbi.nlm.nih.gov/pubmed/28345612
http://dx.doi.org/10.1038/srep45344
_version_ 1782517688295227392
author Zhu, Tongtong
Liu, Yingjun
Ding, Tao
Fu, Wai Yuen
Jarman, John
Ren, Christopher Xiang
Kumar, R. Vasant
Oliver, Rachel A.
author_facet Zhu, Tongtong
Liu, Yingjun
Ding, Tao
Fu, Wai Yuen
Jarman, John
Ren, Christopher Xiang
Kumar, R. Vasant
Oliver, Rachel A.
author_sort Zhu, Tongtong
collection PubMed
description Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.
format Online
Article
Text
id pubmed-5366952
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53669522017-03-28 Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification Zhu, Tongtong Liu, Yingjun Ding, Tao Fu, Wai Yuen Jarman, John Ren, Christopher Xiang Kumar, R. Vasant Oliver, Rachel A. Sci Rep Article Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices. Nature Publishing Group 2017-03-27 /pmc/articles/PMC5366952/ /pubmed/28345612 http://dx.doi.org/10.1038/srep45344 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Zhu, Tongtong
Liu, Yingjun
Ding, Tao
Fu, Wai Yuen
Jarman, John
Ren, Christopher Xiang
Kumar, R. Vasant
Oliver, Rachel A.
Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title_full Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title_fullStr Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title_full_unstemmed Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title_short Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification
title_sort wafer-scale fabrication of non-polar mesoporous gan distributed bragg reflectors via electrochemical porosification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366952/
https://www.ncbi.nlm.nih.gov/pubmed/28345612
http://dx.doi.org/10.1038/srep45344
work_keys_str_mv AT zhutongtong waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT liuyingjun waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT dingtao waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT fuwaiyuen waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT jarmanjohn waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT renchristopherxiang waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT kumarrvasant waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification
AT oliverrachela waferscalefabricationofnonpolarmesoporousgandistributedbraggreflectorsviaelectrochemicalporosification