Cargando…
ML2Motif—Reliable extraction of discriminative sequence motifs from learning machines
High prediction accuracies are not the only objective to consider when solving problems using machine learning. Instead, particular scientific applications require some explanation of the learned prediction function. For computational biology, positional oligomer importance matrices (POIMs) have bee...
Autores principales: | Vidovic, Marina M. -C., Kloft, Marius, Müller, Klaus-Robert, Görnitz, Nico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367830/ https://www.ncbi.nlm.nih.gov/pubmed/28346487 http://dx.doi.org/10.1371/journal.pone.0174392 |
Ejemplares similares
-
SVM2Motif—Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor
por: Vidovic, Marina M. -C., et al.
Publicado: (2015) -
Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data
por: Mieth, Bettina, et al.
Publicado: (2019) -
A Discriminative Approach for Unsupervised Clustering of DNA Sequence Motifs
por: Stegmaier, Philip, et al.
Publicado: (2013) -
Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX)
por: Asgari, Ehsaneddin, et al.
Publicado: (2019) -
Discriminative motif discovery in DNA and protein sequences using the DEME algorithm
por: Redhead, Emma, et al.
Publicado: (2007)