Cargando…
A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of re...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368052/ https://www.ncbi.nlm.nih.gov/pubmed/28128438 http://dx.doi.org/10.1111/bph.13728 |
_version_ | 1782517854106550272 |
---|---|
author | Chuaiphichai, Surawee Crabtree, Mark J Mcneill, Eileen Hale, Ashley B Trelfa, Lucy Channon, Keith M Douglas, Gillian |
author_facet | Chuaiphichai, Surawee Crabtree, Mark J Mcneill, Eileen Hale, Ashley B Trelfa, Lucy Channon, Keith M Douglas, Gillian |
author_sort | Chuaiphichai, Surawee |
collection | PubMed |
description | BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation. EXPERIMENTAL APPROACH: The reactivity of mouse second‐order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS: Gch1 (fl/fl)Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1 (fl/fl)Tie2cre mice. Gch1 (fl/fl)Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L‐NAME. Endothelium‐dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1 (fl/fl)Tie2cre mice, compared with those from wild‐type littermates. Loss of eNOS‐derived NO‐mediated vasodilatation was associated with increased eNOS‐derived H(2)O(2) and cyclooxygenase‐derived vasodilator in Gch1 (fl/fl)Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS: Endothelial cell Gch1 and BH4‐dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease. |
format | Online Article Text |
id | pubmed-5368052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53680522017-03-29 A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice Chuaiphichai, Surawee Crabtree, Mark J Mcneill, Eileen Hale, Ashley B Trelfa, Lucy Channon, Keith M Douglas, Gillian Br J Pharmacol Research Papers BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation. EXPERIMENTAL APPROACH: The reactivity of mouse second‐order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS: Gch1 (fl/fl)Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1 (fl/fl)Tie2cre mice. Gch1 (fl/fl)Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L‐NAME. Endothelium‐dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1 (fl/fl)Tie2cre mice, compared with those from wild‐type littermates. Loss of eNOS‐derived NO‐mediated vasodilatation was associated with increased eNOS‐derived H(2)O(2) and cyclooxygenase‐derived vasodilator in Gch1 (fl/fl)Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS: Endothelial cell Gch1 and BH4‐dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease. John Wiley and Sons Inc. 2017-03-13 2017-04 /pmc/articles/PMC5368052/ /pubmed/28128438 http://dx.doi.org/10.1111/bph.13728 Text en © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Chuaiphichai, Surawee Crabtree, Mark J Mcneill, Eileen Hale, Ashley B Trelfa, Lucy Channon, Keith M Douglas, Gillian A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title | A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title_full | A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title_fullStr | A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title_full_unstemmed | A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title_short | A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
title_sort | key role for tetrahydrobiopterin‐dependent endothelial nos regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368052/ https://www.ncbi.nlm.nih.gov/pubmed/28128438 http://dx.doi.org/10.1111/bph.13728 |
work_keys_str_mv | AT chuaiphichaisurawee akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT crabtreemarkj akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT mcneilleileen akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT haleashleyb akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT trelfalucy akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT channonkeithm akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT douglasgillian akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT chuaiphichaisurawee keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT crabtreemarkj keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT mcneilleileen keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT haleashleyb keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT trelfalucy keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT channonkeithm keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice AT douglasgillian keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice |