Cargando…

A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice

BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of re...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuaiphichai, Surawee, Crabtree, Mark J, Mcneill, Eileen, Hale, Ashley B, Trelfa, Lucy, Channon, Keith M, Douglas, Gillian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368052/
https://www.ncbi.nlm.nih.gov/pubmed/28128438
http://dx.doi.org/10.1111/bph.13728
_version_ 1782517854106550272
author Chuaiphichai, Surawee
Crabtree, Mark J
Mcneill, Eileen
Hale, Ashley B
Trelfa, Lucy
Channon, Keith M
Douglas, Gillian
author_facet Chuaiphichai, Surawee
Crabtree, Mark J
Mcneill, Eileen
Hale, Ashley B
Trelfa, Lucy
Channon, Keith M
Douglas, Gillian
author_sort Chuaiphichai, Surawee
collection PubMed
description BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation. EXPERIMENTAL APPROACH: The reactivity of mouse second‐order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS: Gch1 (fl/fl)Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1 (fl/fl)Tie2cre mice. Gch1 (fl/fl)Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L‐NAME. Endothelium‐dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1 (fl/fl)Tie2cre mice, compared with those from wild‐type littermates. Loss of eNOS‐derived NO‐mediated vasodilatation was associated with increased eNOS‐derived H(2)O(2) and cyclooxygenase‐derived vasodilator in Gch1 (fl/fl)Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS: Endothelial cell Gch1 and BH4‐dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease.
format Online
Article
Text
id pubmed-5368052
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53680522017-03-29 A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice Chuaiphichai, Surawee Crabtree, Mark J Mcneill, Eileen Hale, Ashley B Trelfa, Lucy Channon, Keith M Douglas, Gillian Br J Pharmacol Research Papers BACKGROUND AND PURPOSE: The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation. EXPERIMENTAL APPROACH: The reactivity of mouse second‐order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS: Gch1 (fl/fl)Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1 (fl/fl)Tie2cre mice. Gch1 (fl/fl)Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L‐NAME. Endothelium‐dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1 (fl/fl)Tie2cre mice, compared with those from wild‐type littermates. Loss of eNOS‐derived NO‐mediated vasodilatation was associated with increased eNOS‐derived H(2)O(2) and cyclooxygenase‐derived vasodilator in Gch1 (fl/fl)Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS: Endothelial cell Gch1 and BH4‐dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease. John Wiley and Sons Inc. 2017-03-13 2017-04 /pmc/articles/PMC5368052/ /pubmed/28128438 http://dx.doi.org/10.1111/bph.13728 Text en © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Papers
Chuaiphichai, Surawee
Crabtree, Mark J
Mcneill, Eileen
Hale, Ashley B
Trelfa, Lucy
Channon, Keith M
Douglas, Gillian
A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title_full A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title_fullStr A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title_full_unstemmed A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title_short A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
title_sort key role for tetrahydrobiopterin‐dependent endothelial nos regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368052/
https://www.ncbi.nlm.nih.gov/pubmed/28128438
http://dx.doi.org/10.1111/bph.13728
work_keys_str_mv AT chuaiphichaisurawee akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT crabtreemarkj akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT mcneilleileen akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT haleashleyb akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT trelfalucy akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT channonkeithm akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT douglasgillian akeyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT chuaiphichaisurawee keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT crabtreemarkj keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT mcneilleileen keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT haleashleyb keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT trelfalucy keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT channonkeithm keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice
AT douglasgillian keyrolefortetrahydrobiopterindependentendothelialnosregulationinresistancearteriesstudiesinendothelialcelltetrahydrobiopterindeficientmice