Cargando…
Multi-channel MRI segmentation of eye structures and tumors using patient-specific features
Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369682/ https://www.ncbi.nlm.nih.gov/pubmed/28350816 http://dx.doi.org/10.1371/journal.pone.0173900 |
_version_ | 1782518122710827008 |
---|---|
author | Ciller, Carlos De Zanet, Sandro Kamnitsas, Konstantinos Maeder, Philippe Glocker, Ben Munier, Francis L. Rueckert, Daniel Thiran, Jean-Philippe Bach Cuadra, Meritxell Sznitman, Raphael |
author_facet | Ciller, Carlos De Zanet, Sandro Kamnitsas, Konstantinos Maeder, Philippe Glocker, Ben Munier, Francis L. Rueckert, Daniel Thiran, Jean-Philippe Bach Cuadra, Meritxell Sznitman, Raphael |
author_sort | Ciller, Carlos |
collection | PubMed |
description | Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed. |
format | Online Article Text |
id | pubmed-5369682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53696822017-04-06 Multi-channel MRI segmentation of eye structures and tumors using patient-specific features Ciller, Carlos De Zanet, Sandro Kamnitsas, Konstantinos Maeder, Philippe Glocker, Ben Munier, Francis L. Rueckert, Daniel Thiran, Jean-Philippe Bach Cuadra, Meritxell Sznitman, Raphael PLoS One Research Article Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed. Public Library of Science 2017-03-28 /pmc/articles/PMC5369682/ /pubmed/28350816 http://dx.doi.org/10.1371/journal.pone.0173900 Text en © 2017 Ciller et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ciller, Carlos De Zanet, Sandro Kamnitsas, Konstantinos Maeder, Philippe Glocker, Ben Munier, Francis L. Rueckert, Daniel Thiran, Jean-Philippe Bach Cuadra, Meritxell Sznitman, Raphael Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title | Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title_full | Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title_fullStr | Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title_full_unstemmed | Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title_short | Multi-channel MRI segmentation of eye structures and tumors using patient-specific features |
title_sort | multi-channel mri segmentation of eye structures and tumors using patient-specific features |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369682/ https://www.ncbi.nlm.nih.gov/pubmed/28350816 http://dx.doi.org/10.1371/journal.pone.0173900 |
work_keys_str_mv | AT cillercarlos multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT dezanetsandro multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT kamnitsaskonstantinos multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT maederphilippe multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT glockerben multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT munierfrancisl multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT rueckertdaniel multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT thiranjeanphilippe multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT bachcuadrameritxell multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures AT sznitmanraphael multichannelmrisegmentationofeyestructuresandtumorsusingpatientspecificfeatures |