Cargando…

Uniquely altered transcripts are associated with immune preservation in HIV infection

The mechanisms underlying host HIV control hold much promise in the search for a functional HIV cure. We investigated the host genomic signatures in elite controllers or rapid progressors following recent infection and the correlates of immune reconstitution during combination antiretroviral therapy...

Descripción completa

Detalles Bibliográficos
Autores principales: Zanoni, Michelle, Aventurato, Ítalo Karmann, Hunter, James, Sucupira, Maria Cecilia Araripe, Diaz, Ricardo Sobhie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370105/
https://www.ncbi.nlm.nih.gov/pubmed/28350860
http://dx.doi.org/10.1371/journal.pone.0169868
Descripción
Sumario:The mechanisms underlying host HIV control hold much promise in the search for a functional HIV cure. We investigated the host genomic signatures in elite controllers or rapid progressors following recent infection and the correlates of immune reconstitution during combination antiretroviral therapy. We characterized the HIV-specific longitudinal host transcriptional response of peripheral blood mononuclear cells from elite controllers, rapid progressors, immune responders and non-responders using a RT-qPCR array in a cohort of recently HIV-infected Brazilian individuals. The elite controllers expressed unique transcripts early in infection that were closely associated with specialized cross-presentation between XCR1(+) DCs and antigen-specific CD8(+) T cells (XCL1). The natural suppression of HIV was also associated with the highly functional co-expression of cytokines and chemokines (CCL2, TNF and IL-10) concomitant with the maintenance of important anti-inflammatory and anticoagulant properties (Antithrombin III). Immune responders exhibited exclusively upregulated mRNAs possibly related to stem cell mobilization before combination antiretroviral therapy (neutrophil elastase). Our longitudinal approach to gene expression permitted us to discover previously unrecognized determinants that contribute to natural or antiretroviral-mediated HIV-1 immune control.