Cargando…

LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis

Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity....

Descripción completa

Detalles Bibliográficos
Autores principales: Conrad, Neida L., Cruz McBride, Flávia W., Souza, Jéssica D., Silveira, Marcelle M., Félix, Samuel, Mendonça, Karla S., Santos, Cleiton S., Athanazio, Daniel A., Medeiros, Marco A., Reis, Mitermayer G., Dellagostin, Odir A., McBride, Alan J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370146/
https://www.ncbi.nlm.nih.gov/pubmed/28301479
http://dx.doi.org/10.1371/journal.pntd.0005441
_version_ 1782518191159771136
author Conrad, Neida L.
Cruz McBride, Flávia W.
Souza, Jéssica D.
Silveira, Marcelle M.
Félix, Samuel
Mendonça, Karla S.
Santos, Cleiton S.
Athanazio, Daniel A.
Medeiros, Marco A.
Reis, Mitermayer G.
Dellagostin, Odir A.
McBride, Alan J. A.
author_facet Conrad, Neida L.
Cruz McBride, Flávia W.
Souza, Jéssica D.
Silveira, Marcelle M.
Félix, Samuel
Mendonça, Karla S.
Santos, Cleiton S.
Athanazio, Daniel A.
Medeiros, Marco A.
Reis, Mitermayer G.
Dellagostin, Odir A.
McBride, Alan J. A.
author_sort Conrad, Neida L.
collection PubMed
description Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health.
format Online
Article
Text
id pubmed-5370146
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-53701462017-04-06 LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis Conrad, Neida L. Cruz McBride, Flávia W. Souza, Jéssica D. Silveira, Marcelle M. Félix, Samuel Mendonça, Karla S. Santos, Cleiton S. Athanazio, Daniel A. Medeiros, Marco A. Reis, Mitermayer G. Dellagostin, Odir A. McBride, Alan J. A. PLoS Negl Trop Dis Research Article Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health. Public Library of Science 2017-03-16 /pmc/articles/PMC5370146/ /pubmed/28301479 http://dx.doi.org/10.1371/journal.pntd.0005441 Text en © 2017 Conrad et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Conrad, Neida L.
Cruz McBride, Flávia W.
Souza, Jéssica D.
Silveira, Marcelle M.
Félix, Samuel
Mendonça, Karla S.
Santos, Cleiton S.
Athanazio, Daniel A.
Medeiros, Marco A.
Reis, Mitermayer G.
Dellagostin, Odir A.
McBride, Alan J. A.
LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title_full LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title_fullStr LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title_full_unstemmed LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title_short LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
title_sort ligb subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370146/
https://www.ncbi.nlm.nih.gov/pubmed/28301479
http://dx.doi.org/10.1371/journal.pntd.0005441
work_keys_str_mv AT conradneidal ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT cruzmcbrideflaviaw ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT souzajessicad ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT silveiramarcellem ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT felixsamuel ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT mendoncakarlas ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT santoscleitons ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT athanaziodaniela ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT medeirosmarcoa ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT reismitermayerg ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT dellagostinodira ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis
AT mcbridealanja ligbsubunitvaccineconferssterileimmunityagainstchallengeinthehamstermodelofleptospirosis