Cargando…
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
Most existing dimensionality reduction and clustering packages for single-cell RNA-seq (scRNA-seq) data deal with dropouts by heavy modeling and computational machinery. Here, we introduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast algorithm that uses a novel yet...
Autores principales: | Lin, Peijie, Troup, Michael, Ho, Joshua W. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371246/ https://www.ncbi.nlm.nih.gov/pubmed/28351406 http://dx.doi.org/10.1186/s13059-017-1188-0 |
Ejemplares similares
-
Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data
por: Wei, Nana, et al.
Publicado: (2022) -
ImputAccur: fast and user-friendly calculation of genotype-imputation accuracy-measures
por: Thormann, Kolja A., et al.
Publicado: (2022) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
An interpretable framework for clustering single-cell RNA-Seq datasets
por: Zhang, Jesse M., et al.
Publicado: (2018)