Cargando…
Discovery of temporal and disease association patterns in condition-specific hospital utilization rates
Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to app...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371293/ https://www.ncbi.nlm.nih.gov/pubmed/28355219 http://dx.doi.org/10.1371/journal.pone.0172049 |
_version_ | 1782518392742215680 |
---|---|
author | Haimovich, Julian S. Venkatesh, Arjun K. Shojaee, Abbas Coppi, Andreas Warner, Frederick Li, Shu-Xia Krumholz, Harlan M. |
author_facet | Haimovich, Julian S. Venkatesh, Arjun K. Shojaee, Abbas Coppi, Andreas Warner, Frederick Li, Shu-Xia Krumholz, Harlan M. |
author_sort | Haimovich, Julian S. |
collection | PubMed |
description | Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to apply a data-driven approach to characterize temporal variation in condition-specific hospitalizations. Using a dataset of 34 million inpatient discharges gathered from hospitals in New York State from 2008–2011, we grouped all discharges into 263 clinical conditions based on the principal discharge diagnosis using Clinical Classification Software in order to mitigate the limitation that administrative claims data reflect clinical conditions to varying specificity. After applying Seasonal-Trend Decomposition by LOESS, we estimated the periodicity of the seasonal component using spectral analysis and applied harmonic regression to calculate the amplitude and phase of the condition’s seasonal utilization pattern. We also introduced four new indices of temporal variation: mean oscillation width, seasonal coefficient, trend coefficient, and linearity of the trend. Finally, K-means clustering was used to group conditions across these four indices to identify common temporal variation patterns. Of all 263 clinical conditions considered, 164 demonstrated statistically significant seasonality. Notably, we identified conditions for which seasonal variation has not been previously described such as ovarian cancer, tuberculosis, and schizophrenia. Clustering analysis yielded three distinct groups of conditions based on multiple measures of seasonal variation. Our study was limited to New York State and results may not directly apply to other regions with distinct climates and health burden. A substantial proportion of medical conditions, larger than previously described, exhibit seasonal variation in hospital utilization. Moreover, the application of clustering tools yields groups of clinically heterogeneous conditions with similar seasonal phenotypes. Further investigation is necessary to uncover common etiologies underlying these shared seasonal phenotypes. |
format | Online Article Text |
id | pubmed-5371293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53712932017-04-07 Discovery of temporal and disease association patterns in condition-specific hospital utilization rates Haimovich, Julian S. Venkatesh, Arjun K. Shojaee, Abbas Coppi, Andreas Warner, Frederick Li, Shu-Xia Krumholz, Harlan M. PLoS One Research Article Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to apply a data-driven approach to characterize temporal variation in condition-specific hospitalizations. Using a dataset of 34 million inpatient discharges gathered from hospitals in New York State from 2008–2011, we grouped all discharges into 263 clinical conditions based on the principal discharge diagnosis using Clinical Classification Software in order to mitigate the limitation that administrative claims data reflect clinical conditions to varying specificity. After applying Seasonal-Trend Decomposition by LOESS, we estimated the periodicity of the seasonal component using spectral analysis and applied harmonic regression to calculate the amplitude and phase of the condition’s seasonal utilization pattern. We also introduced four new indices of temporal variation: mean oscillation width, seasonal coefficient, trend coefficient, and linearity of the trend. Finally, K-means clustering was used to group conditions across these four indices to identify common temporal variation patterns. Of all 263 clinical conditions considered, 164 demonstrated statistically significant seasonality. Notably, we identified conditions for which seasonal variation has not been previously described such as ovarian cancer, tuberculosis, and schizophrenia. Clustering analysis yielded three distinct groups of conditions based on multiple measures of seasonal variation. Our study was limited to New York State and results may not directly apply to other regions with distinct climates and health burden. A substantial proportion of medical conditions, larger than previously described, exhibit seasonal variation in hospital utilization. Moreover, the application of clustering tools yields groups of clinically heterogeneous conditions with similar seasonal phenotypes. Further investigation is necessary to uncover common etiologies underlying these shared seasonal phenotypes. Public Library of Science 2017-03-29 /pmc/articles/PMC5371293/ /pubmed/28355219 http://dx.doi.org/10.1371/journal.pone.0172049 Text en © 2017 Haimovich et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Haimovich, Julian S. Venkatesh, Arjun K. Shojaee, Abbas Coppi, Andreas Warner, Frederick Li, Shu-Xia Krumholz, Harlan M. Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title | Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title_full | Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title_fullStr | Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title_full_unstemmed | Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title_short | Discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
title_sort | discovery of temporal and disease association patterns in condition-specific hospital utilization rates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371293/ https://www.ncbi.nlm.nih.gov/pubmed/28355219 http://dx.doi.org/10.1371/journal.pone.0172049 |
work_keys_str_mv | AT haimovichjulians discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT venkatesharjunk discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT shojaeeabbas discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT coppiandreas discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT warnerfrederick discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT lishuxia discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates AT krumholzharlanm discoveryoftemporalanddiseaseassociationpatternsinconditionspecifichospitalutilizationrates |