Cargando…
Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy
BACKGROUND: Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor’s activity for the purposes of quality assurance, safety, and continuing professional development. OBJECTIVE: The objective of the study was to evaluate the accuracy of machine learn...
Autores principales: | Gibbons, Chris, Richards, Suzanne, Valderas, Jose Maria, Campbell, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371715/ https://www.ncbi.nlm.nih.gov/pubmed/28298265 http://dx.doi.org/10.2196/jmir.6533 |
Ejemplares similares
-
Automatic Classification of Online Doctor Reviews: Evaluation of Text Classifier Algorithms
por: Rivas, Ryan, et al.
Publicado: (2018) -
Classifying Circumnutation in Pea Plants via Supervised Machine Learning
por: Wang, Qiuran, et al.
Publicado: (2023) -
An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples
por: Bose, Shilpi, et al.
Publicado: (2021) -
Weakly supervised label propagation algorithm classifies lung cancer imaging subtypes
por: Ren, Xueting, et al.
Publicado: (2023) -
A Systematic Comparison of Supervised Classifiers
por: Amancio, Diego Raphael, et al.
Publicado: (2014)