Cargando…

Ecological Momentary Assessment in Behavioral Research: Addressing Technological and Human Participant Challenges

BACKGROUND: Ecological momentary assessment (EMA) assesses individuals’ current experiences, behaviors, and moods as they occur in real time and in their natural environment. EMA studies, particularly those of longer duration, are complex and require an infrastructure to support the data flow and mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Burke, Lora E, Shiffman, Saul, Music, Edvin, Styn, Mindi A, Kriska, Andrea, Smailagic, Asim, Siewiorek, Daniel, Ewing, Linda J, Chasens, Eileen, French, Brian, Mancino, Juliet, Mendez, Dara, Strollo, Patrick, Rathbun, Stephen L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371716/
https://www.ncbi.nlm.nih.gov/pubmed/28298264
http://dx.doi.org/10.2196/jmir.7138
Descripción
Sumario:BACKGROUND: Ecological momentary assessment (EMA) assesses individuals’ current experiences, behaviors, and moods as they occur in real time and in their natural environment. EMA studies, particularly those of longer duration, are complex and require an infrastructure to support the data flow and monitoring of EMA completion. OBJECTIVE: Our objective is to provide a practical guide to developing and implementing an EMA study, with a focus on the methods and logistics of conducting such a study. METHODS: The EMPOWER study was a 12-month study that used EMA to examine the triggers of lapses and relapse following intentional weight loss. We report on several studies that informed the implementation of the EMPOWER study: (1) a series of pilot studies, (2) the EMPOWER study’s infrastructure, (3) training of study participants in use of smartphones and the EMA protocol and, (4) strategies used to enhance adherence to completing EMA surveys. RESULTS: The study enrolled 151 adults and had 87.4% (132/151) retention rate at 12 months. Our learning experiences in the development of the infrastructure to support EMA assessments for the 12-month study spanned several topic areas. Included were the optimal frequency of EMA prompts to maximize data collection without overburdening participants; the timing and scheduling of EMA prompts; technological lessons to support a longitudinal study, such as proper communication between the Android smartphone, the Web server, and the database server; and use of a phone that provided access to the system’s functionality for EMA data collection to avoid loss of data and minimize the impact of loss of network connectivity. These were especially important in a 1-year study with participants who might travel. It also protected the data collection from any server-side failure. Regular monitoring of participants’ response to EMA prompts was critical, so we built in incentives to enhance completion of EMA surveys. During the first 6 months of the 12-month study interval, adherence to completing EMA surveys was high, with 88.3% (66,978/75,888) completion of random assessments and around 90% (23,411/25,929 and 23,343/26,010) completion of time-contingent assessments, despite the duration of EMA data collection and challenges with implementation. CONCLUSIONS: This work informed us of the necessary preliminary steps to plan and prepare a longitudinal study using smartphone technology and the critical elements to ensure participant engagement in the potentially burdensome protocol, which spanned 12 months. While this was a technology-supported and -programmed study, it required close oversight to ensure all elements were functioning correctly, particularly once human participants became involved.