Cargando…

Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV

Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an e...

Descripción completa

Detalles Bibliográficos
Autores principales: Bazaka, Kateryna, Ahmad, Jakaria, Oelgemöller, Michael, Uddin, Ashraf, Jacob, Mohan V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372367/
https://www.ncbi.nlm.nih.gov/pubmed/28358138
http://dx.doi.org/10.1038/srep45599
Descripción
Sumario:Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC(70)BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV–A and UV–B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV–C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.