Cargando…

Study on specificity of colon carcinoma-associated serum markers and establishment of SVM prediction model

We aimed to evaluate the specificity of 12 tumor markers related to colon carcinoma and identify the most sensitive index. Logistic regression and Bhattacharyya distance were used to evaluate the index. Then, different index combinations were used to establish a support vector machine (SVM) diagnosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lu, Ma, Xuhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372389/
https://www.ncbi.nlm.nih.gov/pubmed/28386191
http://dx.doi.org/10.1016/j.sjbs.2017.01.037
Descripción
Sumario:We aimed to evaluate the specificity of 12 tumor markers related to colon carcinoma and identify the most sensitive index. Logistic regression and Bhattacharyya distance were used to evaluate the index. Then, different index combinations were used to establish a support vector machine (SVM) diagnosis model of malignant colon carcinoma. The accuracy of the model was checked. High accuracy was assumed to indicate the high specificity of the index. Through Logistic regression, three indexes, CEA, HSP60 and CA199, were screened out. Using Bhattacharyya distance, four indexes with the largest Bhattacharyya distance were screened out, including CEA, NSE, AFP, and CA724. The specificity of the combination of the above six indexes was higher than that of other combinations, so did the accuracy of the established SVM identification model. Using Logistic regression and Bhattacharyya distance for detection and establishing an SVM model based on different serum marker combinations can increase diagnostic accuracy, providing a theoretical basis for application of mathematical models in cancer diagnosis.