Cargando…
Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity
The aim of the present study was to investigate whether glycated ovalbumin (OVA) showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA) was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d)-mannopyranoside. An increase in the number of modified c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372536/ https://www.ncbi.nlm.nih.gov/pubmed/28264493 http://dx.doi.org/10.3390/ijms18030520 |
Sumario: | The aim of the present study was to investigate whether glycated ovalbumin (OVA) showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA) was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d)-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface. |
---|