Cargando…
Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection
This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cycloox...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372926/ https://www.ncbi.nlm.nih.gov/pubmed/28287423 http://dx.doi.org/10.3390/nu9030263 |
Sumario: | This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE(2)) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE(2), and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA. |
---|