Cargando…
A data-driven approach to estimating the number of clusters in hierarchical clustering
DNA microarray and gene expression problems often require a researcher to perform clustering on their data in a bid to better understand its structure. In cases where the number of clusters is not known, one can resort to hierarchical clustering methods. However, there currently exist very few autom...
Autor principal: | Zambelli, Antoine E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373427/ https://www.ncbi.nlm.nih.gov/pubmed/28408972 http://dx.doi.org/10.12688/f1000research.10103.1 |
Ejemplares similares
-
Latent Class Cluster Analysis: Selecting the number of clusters
por: Lezhnina, Olga, et al.
Publicado: (2022) -
Clustering analysis of SAGE data using a Poisson approach
por: Cai, Li, et al.
Publicado: (2004) -
MultiK: an automated tool to determine optimal cluster numbers in single-cell RNA sequencing data
por: Liu, Siyao, et al.
Publicado: (2021) -
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
por: Wang, Zongqin, et al.
Publicado: (2023) -
Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
por: Granat, Robert, et al.
Publicado: (2021)