Cargando…

The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482

Soil and rhizosphere bacteria produce an array of secondary metabolites including a wide range of volatile organic compounds (VOCs). These compounds play an important role in the long-distance interactions and communication between (micro)organisms. Furthermore, bacterial VOCs are involved in plant...

Descripción completa

Detalles Bibliográficos
Autores principales: Ossowicki, Adam, Jafra, Sylwia, Garbeva, Paolina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373542/
https://www.ncbi.nlm.nih.gov/pubmed/28358818
http://dx.doi.org/10.1371/journal.pone.0174362
Descripción
Sumario:Soil and rhizosphere bacteria produce an array of secondary metabolites including a wide range of volatile organic compounds (VOCs). These compounds play an important role in the long-distance interactions and communication between (micro)organisms. Furthermore, bacterial VOCs are involved in plant pathogens inhibition and induction of soil fungistasis and suppressivenes. In the present study, we analysed the volatile blend emitted by the rhizospheric isolate Pseudomonas donghuensis P482 and evaluated the volatile effect on the plant pathogenic fungi and bacteria as well as one oomycete. Moreover, we investigated the role of the GacS/GacA system on VOCs production in P. donghuensis P482. The results obtained demonstrated that VOCs emitted by P. donghuensis P482 have strong antifungal and antioomycete, but not antibacterial activity. The production of certain volatiles such as dimethyl sulfide, S-methyl thioacetate, methyl thiocyanate, dimethyl trisulfide, 1-undecan and HCN is depended on the GacS/GacA two-component regulatory system. Apparently, these compounds play an important role in the pathogens suppression as the gacA mutant entirely lost the ability to inhibit via volatiles the growth of tested plant pathogens.