Cargando…
Adaptive feature selection using v-shaped binary particle swarm optimization
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate th...
Autores principales: | Teng, Xuyang, Dong, Hongbin, Zhou, Xiurong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373580/ https://www.ncbi.nlm.nih.gov/pubmed/28358850 http://dx.doi.org/10.1371/journal.pone.0173907 |
Ejemplares similares
-
The Improvement of V-Shaped Transfer Function of Binary Particle Swarm Optimization
por: Zhang, Dong-Yang, et al.
Publicado: (2020) -
Z-Shaped Transfer Functions for Binary Particle Swarm Optimization Algorithm
por: Guo, Sha-sha, et al.
Publicado: (2020) -
Binary particle swarm optimization for operon prediction
por: Chuang, Li-Yeh, et al.
Publicado: (2010) -
Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
por: Annavarapu, Chandra Sekhara Rao, et al.
Publicado: (2016) -
Feature Selection Based on Adaptive Particle Swarm Optimization with Leadership Learning
por: Ye, Zhiwei, et al.
Publicado: (2022)