Cargando…

Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model

In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two s...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakubczyk, Paweł, Majchrowski, Klaudiusz, Tralle, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374097/
https://www.ncbi.nlm.nih.gov/pubmed/28363237
http://dx.doi.org/10.1186/s11671-017-1985-0
Descripción
Sumario:In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of “revivals” and “collapses” in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.