Cargando…
Characterization of a Novel Monoclonal Antibody against Human Mitochondrial Ferritin and Its Immunohistochemical Application in Human and Monkey Substantia Nigra
Mitochondrial ferritin (FtMt) is a novel iron storage protein with high homology to H-ferritin. Unlike the ubiquitously expressed H- and L-ferritin, FtMt is expressed in specific tissues such as the testis, heart, and brain. The function of FtMt is not fully understood; however, evidence suggests th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374103/ https://www.ncbi.nlm.nih.gov/pubmed/28386150 http://dx.doi.org/10.1267/ahc.16034 |
Sumario: | Mitochondrial ferritin (FtMt) is a novel iron storage protein with high homology to H-ferritin. Unlike the ubiquitously expressed H- and L-ferritin, FtMt is expressed in specific tissues such as the testis, heart, and brain. The function of FtMt is not fully understood; however, evidence suggests that it has a neuroprotective role in neurodegenerative diseases. We have previously reported that FtMt is expressed in catecholaminergic neurons of the monkey brainstem. To explore FtMt expression in human dopaminergic neurons, we designed a novel monoclonal antibody, C65-2, directed against human FtMt. Here, we report the properties of our C65-2 antibody. Western blots analysis and immunoabsorption tests demonstrated that the C65-2 antibody specifically recognized FtMt with no cross-reactivity to H-ferritin. Immunohistochemistry showed that the C65-2 antibody detected FtMt in neurons of the substantia nigra pars compacta (SNc) in humans and monkeys. We confirmed that FtMt is expressed in dopaminergic neurons of the human SNc. Our results suggest that FtMt is involved in various physiological and pathological mechanisms in human dopaminergic neurons, and the C65-2 monoclonal antibody promises to be a useful tool for determining the localization and biological functions of FtMt in the brain. |
---|