Cargando…
A New Distribution Family for Microarray Data †
The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative standpoint taken here is to search for models that fit the data, characterized by the presence of negative values, preser...
Autores principales: | Kelmansky, Diana Mabel, Ricci, Lila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374365/ https://www.ncbi.nlm.nih.gov/pubmed/28208652 http://dx.doi.org/10.3390/microarrays6010005 |
Ejemplares similares
-
Use of a machine learning framework to predict substance use disorder treatment success
por: Acion, Laura, et al.
Publicado: (2017) -
Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution
por: Novak, Jaroslav P, et al.
Publicado: (2006) -
DBNorm: normalizing high-density oligonucleotide microarray data based on distributions
por: Meng, Qinxue, et al.
Publicado: (2017) -
A distribution-free convolution model for background correction of oligonucleotide microarray data
por: Chen, Zhongxue, et al.
Publicado: (2009) -
Validation and characterization of DNA microarray gene expression data distribution and associated moments
por: Thomas, Reuben, et al.
Publicado: (2010)