Cargando…
Prediction of virus-host infectious association by supervised learning methods
BACKGROUND: The study of virus-host infectious association is important for understanding the functions and dynamics of microbial communities. Both cellular and fractionated viral metagenomic data generate a large number of viral contigs with missing host information. Although relative simple method...
Autores principales: | Zhang, Mengge, Yang, Lianping, Ren, Jie, Ahlgren, Nathan A., Fuhrman, Jed A., Sun, Fengzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374558/ https://www.ncbi.nlm.nih.gov/pubmed/28361670 http://dx.doi.org/10.1186/s12859-017-1473-7 |
Ejemplares similares
-
Alignment-free [Formula: see text] oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences
por: Ahlgren, Nathan A., et al.
Publicado: (2017) -
VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data
por: Ren, Jie, et al.
Publicado: (2017) -
A network-based integrated framework for predicting virus–prokaryote interactions
por: Wang, Weili, et al.
Publicado: (2020) -
ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data
por: Du, Yuxuan, et al.
Publicado: (2023) -
Phage–bacterial contig association prediction with a convolutional neural network
por: Tang, Tianqi, et al.
Publicado: (2022)