Cargando…
A neural joint model for entity and relation extraction from biomedical text
BACKGROUND: Extracting biomedical entities and their relations from text has important applications on biomedical research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be made on feature engineering when feature-based models are employed....
Autores principales: | Li, Fei, Zhang, Meishan, Fu, Guohong, Ji, Donghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374588/ https://www.ncbi.nlm.nih.gov/pubmed/28359255 http://dx.doi.org/10.1186/s12859-017-1609-9 |
Ejemplares similares
-
Extracting biomedical events from pairs of text entities
por: Liu, Xiao, et al.
Publicado: (2015) -
Construction and Application of Text Entity Relation Joint Extraction Model Based on Multi-Head Attention Neural Network
por: Xue, Yafei, et al.
Publicado: (2022) -
A Relational Adaptive Neural Model for Joint Entity and Relation Extraction
por: Duan, Guiduo, et al.
Publicado: (2021) -
MarkerGenie: an NLP-enabled text-mining system for biomedical entity relation extraction
por: Gu, Wenhao, et al.
Publicado: (2022) -
Long short-term memory RNN for biomedical named entity recognition
por: Lyu, Chen, et al.
Publicado: (2017)