Cargando…

SEQUOIA: significance enhanced network querying through context-sensitive random walk and minimization of network conductance

BACKGROUND: Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computa...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Hyundoo, Yoon, Byung-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374659/
https://www.ncbi.nlm.nih.gov/pubmed/28361708
http://dx.doi.org/10.1186/s12918-017-0404-6
Descripción
Sumario:BACKGROUND: Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. RESULTS: In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. CONCLUSIONS: Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-017-0404-6) contains supplementary material, which is available to authorized users.