Cargando…
A sequence-based method to predict the impact of regulatory variants using random forest
BACKGROUND: Most disease-associated variants identified by genome-wide association studies (GWAS) exist in noncoding regions. In spite of the common agreement that such variants may disrupt biological functions of their hosting regulatory elements, it remains a great challenge to characterize the ri...
Autores principales: | Liu, Qiao, Gan, Mingxin, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374684/ https://www.ncbi.nlm.nih.gov/pubmed/28361702 http://dx.doi.org/10.1186/s12918-017-0389-1 |
Ejemplares similares
-
EnContact: predicting enhancer-enhancer contacts using sequence-based deep learning model
por: Gan, Mingxin, et al.
Publicado: (2019) -
A method to predict the impact of regulatory variants from DNA sequence
por: Lee, Dongwon, et al.
Publicado: (2015) -
Predicting Metabolic Syndrome Using the Random Forest Method
por: Worachartcheewan, Apilak, et al.
Publicado: (2015) -
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest
por: Li, Jiajin, et al.
Publicado: (2019)