Cargando…
Improved Accuracy of the Asymmetric Second-Order Vegetation Isoline Equation over the RED–NIR Reflectance Space
The relationship between two reflectances of different bands is often encountered in cross calibration and parameter retrievals from remotely-sensed data. The asymmetric-order vegetation isoline is one such relationship, derived previously, where truncation error was reduced from the first-order app...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375736/ https://www.ncbi.nlm.nih.gov/pubmed/28245566 http://dx.doi.org/10.3390/s17030450 |
Sumario: | The relationship between two reflectances of different bands is often encountered in cross calibration and parameter retrievals from remotely-sensed data. The asymmetric-order vegetation isoline is one such relationship, derived previously, where truncation error was reduced from the first-order approximated isoline by including a second-order term. This study introduces a technique for optimizing the magnitude of the second-order term and further improving the isoline equation’s accuracy while maintaining the simplicity of the derived formulation. A single constant factor was introduced into the formulation to adjust the second-order term. This factor was optimized by simulating canopy radiative transfer. Numerical experiments revealed that the errors in the optimized asymmetric isoline were reduced in magnitude to nearly 1/25 of the errors obtained from the first-order vegetation isoline equation, and to nearly one-fifth of the error obtained from the non-optimized asymmetric isoline equation. The errors in the optimized asymmetric isoline were compared with the magnitudes of the signal-to-noise ratio (SNR) estimates reported for four specific sensors aboard four Earth observation satellites. These results indicated that the error in the asymmetric isoline could be reduced to the level of the SNR by adjusting a single factor. |
---|