Cargando…
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural netw...
Autores principales: | Hoak, Anthony, Medeiros, Henry, Povinelli, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375787/ https://www.ncbi.nlm.nih.gov/pubmed/28273796 http://dx.doi.org/10.3390/s17030501 |
Ejemplares similares
-
Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate
por: Yuan, Changshun, et al.
Publicado: (2015) -
Space Debris Tracking with the Poisson Labeled Multi-Bernoulli Filter
por: Cament, Leonardo, et al.
Publicado: (2021) -
Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation
por: He, Xiangyu, et al.
Publicado: (2016) -
Robust Measurement-Driven Cardinality Balance Multi-Target Multi-Bernoulli Filter
por: Yang, Biao, et al.
Publicado: (2021) -
Multi-Objective Optimization Based Multi-Bernoulli Sensor Selection for Multi-Target Tracking
por: Zhu, Yun, et al.
Publicado: (2019)