Cargando…
SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals
Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to...
Autores principales: | Xiong, Jiping, Cai, Lisang, Wang, Fei, He, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375792/ https://www.ncbi.nlm.nih.gov/pubmed/28273818 http://dx.doi.org/10.3390/s17030506 |
Ejemplares similares
-
Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs
por: Abdullah, Bassem A, et al.
Publicado: (2012) -
Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis
por: Chen, Hanxin, et al.
Publicado: (2022) -
Near-Infrared Spectral Characteristic Extraction and Qualitative Analysis Method for Complex Multi-Component Mixtures Based on TRPCA-SVM
por: Zhang, Guiyu, et al.
Publicado: (2022) -
Determination of Optimal Heart Rate Variability Features Based on SVM-Recursive Feature Elimination for Cumulative Stress Monitoring Using ECG Sensor
por: Park, Dajeong, et al.
Publicado: (2018) -
Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models
por: Zhao, Xia, et al.
Publicado: (2019)