Cargando…
Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints
Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements,...
Autores principales: | Liu, Ryan Wen, Shi, Lin, Yu, Simon Chun Ho, Xiong, Naixue, Wang, Defeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375795/ https://www.ncbi.nlm.nih.gov/pubmed/28273827 http://dx.doi.org/10.3390/s17030509 |
Ejemplares similares
-
Multicomponent MR fingerprinting reconstruction using joint‐sparsity and low‐rank constraints
por: Nagtegaal, Martijn, et al.
Publicado: (2022) -
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
por: Zhao, Di, et al.
Publicado: (2021) -
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint
por: Han, Yue, et al.
Publicado: (2022) -
Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining
por: Cheng, Wenlong, et al.
Publicado: (2017) -
The Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction
por: Virtue, Patrick, et al.
Publicado: (2017)