Cargando…

Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution

A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed F...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hongyan, Jia, Zhenhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375806/
https://www.ncbi.nlm.nih.gov/pubmed/28273879
http://dx.doi.org/10.3390/s17030520
_version_ 1782519060857094144
author Zhang, Hongyan
Jia, Zhenhong
author_facet Zhang, Hongyan
Jia, Zhenhong
author_sort Zhang, Hongyan
collection PubMed
description A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed FRET immunosensor, novel water-soluble amino-conjugated porous SiNPs in ethanol with excellent photoluminescence properties act as the energy donor. Excellent quenching efficiency between SiNPs-ethanol and citrate-stabilized AuNPs by electrostatic interaction via FRET provides an ideal “off-state” (turn-off). The addition of L-Cys leads to releasing the adsorbed AuNPs from the surface of SiNPs and hence the fluorescence emission of SiNPs-ethanol is restored (turn-on), which means the coordination ability of the thiols with AuNPs is stronger than that of the electrostatic interaction. The fluorescence intensity of SiNPs-AuNPs in ethanol is sensitive to L-Cys, and such a restored fluorescence is proportional to the concentration of L-Cys. The method will broadly benefit the development of a new thiol biosensor based on nanostructured porous materials, and the proposed procedure is also expected to develop a variety of functional nanoparticles to form other novel kinds of nanosensors.
format Online
Article
Text
id pubmed-5375806
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-53758062017-04-10 Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution Zhang, Hongyan Jia, Zhenhong Sensors (Basel) Article A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed FRET immunosensor, novel water-soluble amino-conjugated porous SiNPs in ethanol with excellent photoluminescence properties act as the energy donor. Excellent quenching efficiency between SiNPs-ethanol and citrate-stabilized AuNPs by electrostatic interaction via FRET provides an ideal “off-state” (turn-off). The addition of L-Cys leads to releasing the adsorbed AuNPs from the surface of SiNPs and hence the fluorescence emission of SiNPs-ethanol is restored (turn-on), which means the coordination ability of the thiols with AuNPs is stronger than that of the electrostatic interaction. The fluorescence intensity of SiNPs-AuNPs in ethanol is sensitive to L-Cys, and such a restored fluorescence is proportional to the concentration of L-Cys. The method will broadly benefit the development of a new thiol biosensor based on nanostructured porous materials, and the proposed procedure is also expected to develop a variety of functional nanoparticles to form other novel kinds of nanosensors. MDPI 2017-03-05 /pmc/articles/PMC5375806/ /pubmed/28273879 http://dx.doi.org/10.3390/s17030520 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Hongyan
Jia, Zhenhong
Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title_full Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title_fullStr Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title_full_unstemmed Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title_short Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
title_sort development of fluorescent fret probes for “off-on” detection of l-cysteine based on gold nanoparticles and porous silicon nanoparticles in ethanol solution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375806/
https://www.ncbi.nlm.nih.gov/pubmed/28273879
http://dx.doi.org/10.3390/s17030520
work_keys_str_mv AT zhanghongyan developmentoffluorescentfretprobesforoffondetectionoflcysteinebasedongoldnanoparticlesandporoussiliconnanoparticlesinethanolsolution
AT jiazhenhong developmentoffluorescentfretprobesforoffondetectionoflcysteinebasedongoldnanoparticlesandporoussiliconnanoparticlesinethanolsolution