Cargando…
Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution
A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed F...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375806/ https://www.ncbi.nlm.nih.gov/pubmed/28273879 http://dx.doi.org/10.3390/s17030520 |
_version_ | 1782519060857094144 |
---|---|
author | Zhang, Hongyan Jia, Zhenhong |
author_facet | Zhang, Hongyan Jia, Zhenhong |
author_sort | Zhang, Hongyan |
collection | PubMed |
description | A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed FRET immunosensor, novel water-soluble amino-conjugated porous SiNPs in ethanol with excellent photoluminescence properties act as the energy donor. Excellent quenching efficiency between SiNPs-ethanol and citrate-stabilized AuNPs by electrostatic interaction via FRET provides an ideal “off-state” (turn-off). The addition of L-Cys leads to releasing the adsorbed AuNPs from the surface of SiNPs and hence the fluorescence emission of SiNPs-ethanol is restored (turn-on), which means the coordination ability of the thiols with AuNPs is stronger than that of the electrostatic interaction. The fluorescence intensity of SiNPs-AuNPs in ethanol is sensitive to L-Cys, and such a restored fluorescence is proportional to the concentration of L-Cys. The method will broadly benefit the development of a new thiol biosensor based on nanostructured porous materials, and the proposed procedure is also expected to develop a variety of functional nanoparticles to form other novel kinds of nanosensors. |
format | Online Article Text |
id | pubmed-5375806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-53758062017-04-10 Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution Zhang, Hongyan Jia, Zhenhong Sensors (Basel) Article A new type of fluorescence “off-on” probe was designed for L-Cysteine (L-Cys) based on the fluorescence resonance energy transfer (FRET) between negatively charged amino-capped porous silicon nanoparticles (SiNPs) and positively charged citrate-stabilized Au nanoparticles (AuNPs). In this proposed FRET immunosensor, novel water-soluble amino-conjugated porous SiNPs in ethanol with excellent photoluminescence properties act as the energy donor. Excellent quenching efficiency between SiNPs-ethanol and citrate-stabilized AuNPs by electrostatic interaction via FRET provides an ideal “off-state” (turn-off). The addition of L-Cys leads to releasing the adsorbed AuNPs from the surface of SiNPs and hence the fluorescence emission of SiNPs-ethanol is restored (turn-on), which means the coordination ability of the thiols with AuNPs is stronger than that of the electrostatic interaction. The fluorescence intensity of SiNPs-AuNPs in ethanol is sensitive to L-Cys, and such a restored fluorescence is proportional to the concentration of L-Cys. The method will broadly benefit the development of a new thiol biosensor based on nanostructured porous materials, and the proposed procedure is also expected to develop a variety of functional nanoparticles to form other novel kinds of nanosensors. MDPI 2017-03-05 /pmc/articles/PMC5375806/ /pubmed/28273879 http://dx.doi.org/10.3390/s17030520 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Hongyan Jia, Zhenhong Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title | Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title_full | Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title_fullStr | Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title_full_unstemmed | Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title_short | Development of Fluorescent FRET Probes for “Off-On” Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution |
title_sort | development of fluorescent fret probes for “off-on” detection of l-cysteine based on gold nanoparticles and porous silicon nanoparticles in ethanol solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375806/ https://www.ncbi.nlm.nih.gov/pubmed/28273879 http://dx.doi.org/10.3390/s17030520 |
work_keys_str_mv | AT zhanghongyan developmentoffluorescentfretprobesforoffondetectionoflcysteinebasedongoldnanoparticlesandporoussiliconnanoparticlesinethanolsolution AT jiazhenhong developmentoffluorescentfretprobesforoffondetectionoflcysteinebasedongoldnanoparticlesandporoussiliconnanoparticlesinethanolsolution |