Cargando…
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence
Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time seri...
Autores principales: | Zhang, Ran, Peng, Zhen, Wu, Lifeng, Yao, Beibei, Guan, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375835/ https://www.ncbi.nlm.nih.gov/pubmed/28282936 http://dx.doi.org/10.3390/s17030549 |
Ejemplares similares
-
Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
por: Jiang, Peng, et al.
Publicado: (2016) -
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019) -
Boosted Convolutional Neural Network Algorithm for the Classification of the Bearing Fault form 1-D Raw Sensor Data
por: Knap, Paweł, et al.
Publicado: (2023) -
Fault-Diagnosis and Fault-Recovery System of Hall Sensors in Brushless DC Motor Based on Neural Networks †
por: Chu, Kenny Sau Kang, et al.
Publicado: (2023) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022)