Cargando…
Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation †
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots),...
Autores principales: | Ibrahim, Ali, Gastaldo, Paolo, Chible, Hussein, Valle, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375844/ https://www.ncbi.nlm.nih.gov/pubmed/28287448 http://dx.doi.org/10.3390/s17030558 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Fortin, Etienne Marie
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Voigt, Johann Christoph
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Berthold, Anne-Sophie
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Gutsche, Christian
Publicado: (2023)