Cargando…
Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data
Monitoring the components of crop canopies with remote sensing can help us understand the within-canopy variation in spectral properties and resolve the sources of uncertainties in the spectroscopic estimation of crop foliar chemistry. To date, the spectral properties of leaves and panicles in crop...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375864/ https://www.ncbi.nlm.nih.gov/pubmed/28335375 http://dx.doi.org/10.3390/s17030578 |
_version_ | 1782519073648672768 |
---|---|
author | Zhou, Kai Deng, Xinqiang Yao, Xia Tian, Yongchao Cao, Weixing Zhu, Yan Ustin, Susan L. Cheng, Tao |
author_facet | Zhou, Kai Deng, Xinqiang Yao, Xia Tian, Yongchao Cao, Weixing Zhu, Yan Ustin, Susan L. Cheng, Tao |
author_sort | Zhou, Kai |
collection | PubMed |
description | Monitoring the components of crop canopies with remote sensing can help us understand the within-canopy variation in spectral properties and resolve the sources of uncertainties in the spectroscopic estimation of crop foliar chemistry. To date, the spectral properties of leaves and panicles in crop canopies and the shadow effects on their spectral variation remain poorly understood due to the insufficient spatial resolution of traditional spectroscopy data. To address this issue, we used a near-ground imaging spectroscopy system with high spatial and spectral resolutions to examine the spectral properties of rice leaves and panicles in sunlit and shaded portions of canopies and evaluate the effect of shadows on the relationships between spectral indices of leaves and foliar chlorophyll content. The results demonstrated that the shaded components exhibited lower reflectance amplitude but stronger absorption features than their sunlit counterparts. Specifically, the reflectance spectra of panicles had unique double-peak absorption features in the blue region. Among the examined vegetation indices (VIs), significant differences were found in the photochemical reflectance index (PRI) between leaves and panicles and further differences in the transformed chlorophyll absorption reflectance index (TCARI) between sunlit and shaded components. After an image-level separation of canopy components with these two indices, statistical analyses revealed much higher correlations between canopy chlorophyll content and both PRI and TCARI of shaded leaves than for those of sunlit leaves. In contrast, the red edge chlorophyll index (CI(Red-edge)) exhibited the strongest correlations with canopy chlorophyll content among all vegetation indices examined regardless of shadows on leaves. These findings represent significant advances in the understanding of rice leaf and panicle spectral properties under natural light conditions and demonstrate the significance of commonly overlooked shaded leaves in the canopy when correlated to canopy chlorophyll content. |
format | Online Article Text |
id | pubmed-5375864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-53758642017-04-10 Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data Zhou, Kai Deng, Xinqiang Yao, Xia Tian, Yongchao Cao, Weixing Zhu, Yan Ustin, Susan L. Cheng, Tao Sensors (Basel) Article Monitoring the components of crop canopies with remote sensing can help us understand the within-canopy variation in spectral properties and resolve the sources of uncertainties in the spectroscopic estimation of crop foliar chemistry. To date, the spectral properties of leaves and panicles in crop canopies and the shadow effects on their spectral variation remain poorly understood due to the insufficient spatial resolution of traditional spectroscopy data. To address this issue, we used a near-ground imaging spectroscopy system with high spatial and spectral resolutions to examine the spectral properties of rice leaves and panicles in sunlit and shaded portions of canopies and evaluate the effect of shadows on the relationships between spectral indices of leaves and foliar chlorophyll content. The results demonstrated that the shaded components exhibited lower reflectance amplitude but stronger absorption features than their sunlit counterparts. Specifically, the reflectance spectra of panicles had unique double-peak absorption features in the blue region. Among the examined vegetation indices (VIs), significant differences were found in the photochemical reflectance index (PRI) between leaves and panicles and further differences in the transformed chlorophyll absorption reflectance index (TCARI) between sunlit and shaded components. After an image-level separation of canopy components with these two indices, statistical analyses revealed much higher correlations between canopy chlorophyll content and both PRI and TCARI of shaded leaves than for those of sunlit leaves. In contrast, the red edge chlorophyll index (CI(Red-edge)) exhibited the strongest correlations with canopy chlorophyll content among all vegetation indices examined regardless of shadows on leaves. These findings represent significant advances in the understanding of rice leaf and panicle spectral properties under natural light conditions and demonstrate the significance of commonly overlooked shaded leaves in the canopy when correlated to canopy chlorophyll content. MDPI 2017-03-13 /pmc/articles/PMC5375864/ /pubmed/28335375 http://dx.doi.org/10.3390/s17030578 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Kai Deng, Xinqiang Yao, Xia Tian, Yongchao Cao, Weixing Zhu, Yan Ustin, Susan L. Cheng, Tao Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title | Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title_full | Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title_fullStr | Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title_full_unstemmed | Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title_short | Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data |
title_sort | assessing the spectral properties of sunlit and shaded components in rice canopies with near-ground imaging spectroscopy data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375864/ https://www.ncbi.nlm.nih.gov/pubmed/28335375 http://dx.doi.org/10.3390/s17030578 |
work_keys_str_mv | AT zhoukai assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT dengxinqiang assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT yaoxia assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT tianyongchao assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT caoweixing assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT zhuyan assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT ustinsusanl assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata AT chengtao assessingthespectralpropertiesofsunlitandshadedcomponentsinricecanopieswithneargroundimagingspectroscopydata |