Cargando…
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
This paper presents a supervised feature extraction method called weighted kernel entropy component analysis (WKECA) for fault diagnosis of rolling bearings. The method is developed based on kernel entropy component analysis (KECA) which attempts to preserve the Renyi entropy of the data set after d...
Autores principales: | Zhou, Hongdi, Shi, Tielin, Liao, Guanglan, Xuan, Jianping, Duan, Jie, Su, Lei, He, Zhenzhi, Lai, Wuxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375911/ https://www.ncbi.nlm.nih.gov/pubmed/28335480 http://dx.doi.org/10.3390/s17030625 |
Ejemplares similares
-
Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings
por: Duan, Jie, et al.
Publicado: (2018) -
A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures
por: Xiong, Shoucong, et al.
Publicado: (2020) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Stationary Wavelet-Fourier Entropy and Kernel Extreme Learning for Bearing Multi-Fault Diagnosis
por: Rodriguez, Nibaldo, et al.
Publicado: (2019) -
Combining Multi-Scale Wavelet Entropy and Kernelized Classification for Bearing Multi-Fault Diagnosis
por: Rodriguez, Nibaldo, et al.
Publicado: (2019)