Cargando…
c-Jun Amino-Terminal Kinase is Involved in Valproic Acid-Mediated Neuronal Differentiation of Mouse Embryonic NSCs and Neurite Outgrowth of NSC-Derived Neurons
Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, can induce neuronal differentiation, promote neurite extension and exert a neuroprotective effect in central nervous system (CNS) injuries; however, comparatively little is known regarding its action on mouse embryonic neural stem cel...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375971/ https://www.ncbi.nlm.nih.gov/pubmed/28321599 http://dx.doi.org/10.1007/s11064-016-2167-7 |
Sumario: | Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, can induce neuronal differentiation, promote neurite extension and exert a neuroprotective effect in central nervous system (CNS) injuries; however, comparatively little is known regarding its action on mouse embryonic neural stem cells (NSCs) and the underlying molecular mechanism. Recent studies suggested that c-Jun N-terminal kinase (JNK) is required for neurite outgrowth and neuronal differentiation during neuronal development. In the present study, we cultured mouse embryonic NSCs and treated the cells with 1 mM VPA for up to 7 days. The results indicate that VPA promotes the neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons; moreover, VPA induces the phosphorylation of c-Jun by JNK. In contrast, the specific JNK inhibitor SP600125 decreased the VPA-stimulated increase in neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons. Taken together, these results suggest that VPA promotes neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons. Moreover, JNK activation is involved in the effects of VPA stimulation. |
---|