Cargando…
Hitchhiking of host biology by beneficial symbionts enhances transmission
Transmission plays a key role in the evolution of symbiosis. Mixed mode transmission combines horizontal and vertical mechanisms for symbiont acquisition. However, features that enable mixed transmission are poorly understood. Here, we determine the mechanistic basis for the recruitment of the benef...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376049/ https://www.ncbi.nlm.nih.gov/pubmed/25059557 http://dx.doi.org/10.1038/srep05825 |
Sumario: | Transmission plays a key role in the evolution of symbiosis. Mixed mode transmission combines horizontal and vertical mechanisms for symbiont acquisition. However, features that enable mixed transmission are poorly understood. Here, we determine the mechanistic basis for the recruitment of the beneficial bacterium, Aeromonas veronii by the leech, Hirudo verbana. We demonstrate that host mucosal secretions complement imperfect symbiont vertical transmission. First, we show that the A. veronii population within secretions originates from the host digestive tract and proliferates synchronously with shedding frequency, demonstrating the coupling of partner biology. Furthermore, leeches are attracted to these castings with oral contact proving sufficient for symbiont transmission. Leech attraction to mucus is not affected by the symbiont state of either the host or mucus, suggesting that A. veronii exploits preexisting host behavior and physiological traits. A dual transmission mode, integrating multiple layers of host contributions, may prove evolutionarily advantageous for a wide range of symbioses. Using such a strategy, host infection is ensured, while also providing access to a higher genetic diversity of symbionts. Countless host-associated microbes exhibit mixed mode transmission, supporting the use of the leech symbiosis as a model for enhancing our understanding of the specificity, establishment and persistence of microbiotas. |
---|