Cargando…

Nanosecond Pulsed Electric Fields (nsPEFs) Regulate Phenotypes of Chondrocytes through Wnt/β-catenin Signaling Pathway

Nanosecond pulsed electric fields (nsPEFs) characterized by high voltage, low energy and non-thermal effects, have been broadly investigated as a potential tumor therapy; however, little is known about their effects on somatic cells. In this current study, we evaluated effects of nsPEFs on the pheno...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Kun, Guo, Jinsong, Ge, Zigang, Zhang, Jue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376156/
https://www.ncbi.nlm.nih.gov/pubmed/25060711
http://dx.doi.org/10.1038/srep05836
Descripción
Sumario:Nanosecond pulsed electric fields (nsPEFs) characterized by high voltage, low energy and non-thermal effects, have been broadly investigated as a potential tumor therapy; however, little is known about their effects on somatic cells. In this current study, we evaluated effects of nsPEFs on the phenotype of chondrocytes (morphology, glycosaminoglycan (GAG) content, proliferation and gene expression) and explored the mechanisms involved. Our results demonstrated that exposing chondrocytes to nsPEFs led to enhanced proliferation and dedifferentiation, evidenced by the upregulated gene expression of collagen type I (COL I) and downregulated gene expression of Sox9, collagen type II (COL II) and aggrecan (AGG) with activation of the wnt/β-catenin signaling pathway. Inhibition of the wnt/β-catenin pathway partially blocked these effects. Thus we concluded that nsPEFs induce dedifferentiation of chondrocytes partially through transient activation of the wnt/β-catenin signaling pathway.