Cargando…

Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity

In high-transition-temperature superconducting cuprates and iron arsenides, chemical doping plays an important role in inducing superconductivity. Whereas in the cuprate case, the dominant role of doping is to inject charge carriers, the role for the iron arsenides is complex owing to carrier multip...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakajima, M., Ishida, S., Tanaka, T., Kihou, K., Tomioka, Y., Saito, T., Lee, C. H., Fukazawa, H., Kohori, Y., Kakeshita, T., Iyo, A., Ito, T., Eisaki, H., Uchida, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376192/
https://www.ncbi.nlm.nih.gov/pubmed/25077444
http://dx.doi.org/10.1038/srep05873
_version_ 1782519119334080512
author Nakajima, M.
Ishida, S.
Tanaka, T.
Kihou, K.
Tomioka, Y.
Saito, T.
Lee, C. H.
Fukazawa, H.
Kohori, Y.
Kakeshita, T.
Iyo, A.
Ito, T.
Eisaki, H.
Uchida, S.
author_facet Nakajima, M.
Ishida, S.
Tanaka, T.
Kihou, K.
Tomioka, Y.
Saito, T.
Lee, C. H.
Fukazawa, H.
Kohori, Y.
Kakeshita, T.
Iyo, A.
Ito, T.
Eisaki, H.
Uchida, S.
author_sort Nakajima, M.
collection PubMed
description In high-transition-temperature superconducting cuprates and iron arsenides, chemical doping plays an important role in inducing superconductivity. Whereas in the cuprate case, the dominant role of doping is to inject charge carriers, the role for the iron arsenides is complex owing to carrier multiplicity and the diversity of doping. Here, we present a comparative study of the in-plane resistivity and the optical spectrum of doped BaFe(2)As(2), which allows for separation of coherent (itinerant) and incoherent (highly dissipative) charge dynamics. The coherence of the system is controlled by doping, and the doping evolution of the charge dynamics exhibits a distinct difference between electron and hole doping. It is found in common with any type of doping that superconductivity with high transition temperature emerges when the normal-state charge dynamics maintains incoherence and when the resistivity associated with the coherent channel exhibits dominant temperature-linear dependence.
format Online
Article
Text
id pubmed-5376192
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53761922017-04-03 Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity Nakajima, M. Ishida, S. Tanaka, T. Kihou, K. Tomioka, Y. Saito, T. Lee, C. H. Fukazawa, H. Kohori, Y. Kakeshita, T. Iyo, A. Ito, T. Eisaki, H. Uchida, S. Sci Rep Article In high-transition-temperature superconducting cuprates and iron arsenides, chemical doping plays an important role in inducing superconductivity. Whereas in the cuprate case, the dominant role of doping is to inject charge carriers, the role for the iron arsenides is complex owing to carrier multiplicity and the diversity of doping. Here, we present a comparative study of the in-plane resistivity and the optical spectrum of doped BaFe(2)As(2), which allows for separation of coherent (itinerant) and incoherent (highly dissipative) charge dynamics. The coherence of the system is controlled by doping, and the doping evolution of the charge dynamics exhibits a distinct difference between electron and hole doping. It is found in common with any type of doping that superconductivity with high transition temperature emerges when the normal-state charge dynamics maintains incoherence and when the resistivity associated with the coherent channel exhibits dominant temperature-linear dependence. Nature Publishing Group 2014-07-29 /pmc/articles/PMC5376192/ /pubmed/25077444 http://dx.doi.org/10.1038/srep05873 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Article
Nakajima, M.
Ishida, S.
Tanaka, T.
Kihou, K.
Tomioka, Y.
Saito, T.
Lee, C. H.
Fukazawa, H.
Kohori, Y.
Kakeshita, T.
Iyo, A.
Ito, T.
Eisaki, H.
Uchida, S.
Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title_full Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title_fullStr Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title_full_unstemmed Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title_short Normal-state charge dynamics in doped BaFe(2)As(2): Roles of doping and necessary ingredients for superconductivity
title_sort normal-state charge dynamics in doped bafe(2)as(2): roles of doping and necessary ingredients for superconductivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376192/
https://www.ncbi.nlm.nih.gov/pubmed/25077444
http://dx.doi.org/10.1038/srep05873
work_keys_str_mv AT nakajimam normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT ishidas normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT tanakat normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT kihouk normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT tomiokay normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT saitot normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT leech normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT fukazawah normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT kohoriy normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT kakeshitat normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT iyoa normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT itot normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT eisakih normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity
AT uchidas normalstatechargedynamicsindopedbafe2as2rolesofdopingandnecessaryingredientsforsuperconductivity