Cargando…

Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants

Various kind of chemical substances, including man-made chemical products and unintended products, are emitted to ambient air. Some of these substances have been shown to be mutagenic and therefore to act as a carcinogen in humans. National pollutant inventories (e.g., Pollutant Release and Transfer...

Descripción completa

Detalles Bibliográficos
Autor principal: Aoki, Yasunobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376282/
https://www.ncbi.nlm.nih.gov/pubmed/28373898
http://dx.doi.org/10.1186/s41021-016-0064-6
_version_ 1782519132356345856
author Aoki, Yasunobu
author_facet Aoki, Yasunobu
author_sort Aoki, Yasunobu
collection PubMed
description Various kind of chemical substances, including man-made chemical products and unintended products, are emitted to ambient air. Some of these substances have been shown to be mutagenic and therefore to act as a carcinogen in humans. National pollutant inventories (e.g., Pollutant Release and Transfer Registration in Japan) have estimated release amounts of man-made chemical products, but a major concern is the release of suspended particulate matter containing potent mutagens, for example, polycyclic aromatic hydrocarbons and related compounds generated by the combustion of fossil fuel, which are not estimated by PRTR system. In situ exposure studies have revealed that DNA adducts in the lung, and possibly mutations in germline cells are induced in rodents by inhalation of ambient air, indicating that evaluating in vivo mutations is important for assessing environmental health risks. Transgenic rodent systems (Muta, Big Blue, and gpt delta) are good tools for analyzing in vivo mutations induced by a mixture of chemical substances present in the environment. Following inhalation of diesel exhaust (used as a model mixture), mutation frequency was increased in the lung of gpt delta mice and base substitutions were induced at specific guanine residues (mutation hotspots) on the target transgenes. Mutation hotspots induced by diesel exhaust were different from those induced by benzo[a]pyrene, a typical mutagen in ambient air, but nearly identical to those induced by 1,6-dinitropyrene contained in diesel exhaust. Comparison between mutation hotspots in the TP53 (p53) gene in human lung cancer (data extracted from the IARC TP53 database) and mutations we identified in gpt delta mice showed that G to A transitions centered in CGT and CGG trinucleotides were mutation hotspots on both TP53 genes in human lung cancers and gpt genes in transgenic mice that inhaled diesel exhaust. The carcinogenic potency (TD(50) value) of genotoxic carcinogen was shown to be correlated with the in vivo mutagenicity (total dose per increased mutant frequency). These results suggest that the mutations identified in transgenic rodents can help identify environmental mutagens that cause cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s41021-016-0064-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5376282
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53762822017-04-03 Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants Aoki, Yasunobu Genes Environ Review Various kind of chemical substances, including man-made chemical products and unintended products, are emitted to ambient air. Some of these substances have been shown to be mutagenic and therefore to act as a carcinogen in humans. National pollutant inventories (e.g., Pollutant Release and Transfer Registration in Japan) have estimated release amounts of man-made chemical products, but a major concern is the release of suspended particulate matter containing potent mutagens, for example, polycyclic aromatic hydrocarbons and related compounds generated by the combustion of fossil fuel, which are not estimated by PRTR system. In situ exposure studies have revealed that DNA adducts in the lung, and possibly mutations in germline cells are induced in rodents by inhalation of ambient air, indicating that evaluating in vivo mutations is important for assessing environmental health risks. Transgenic rodent systems (Muta, Big Blue, and gpt delta) are good tools for analyzing in vivo mutations induced by a mixture of chemical substances present in the environment. Following inhalation of diesel exhaust (used as a model mixture), mutation frequency was increased in the lung of gpt delta mice and base substitutions were induced at specific guanine residues (mutation hotspots) on the target transgenes. Mutation hotspots induced by diesel exhaust were different from those induced by benzo[a]pyrene, a typical mutagen in ambient air, but nearly identical to those induced by 1,6-dinitropyrene contained in diesel exhaust. Comparison between mutation hotspots in the TP53 (p53) gene in human lung cancer (data extracted from the IARC TP53 database) and mutations we identified in gpt delta mice showed that G to A transitions centered in CGT and CGG trinucleotides were mutation hotspots on both TP53 genes in human lung cancers and gpt genes in transgenic mice that inhaled diesel exhaust. The carcinogenic potency (TD(50) value) of genotoxic carcinogen was shown to be correlated with the in vivo mutagenicity (total dose per increased mutant frequency). These results suggest that the mutations identified in transgenic rodents can help identify environmental mutagens that cause cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s41021-016-0064-6) contains supplementary material, which is available to authorized users. BioMed Central 2017-04-01 /pmc/articles/PMC5376282/ /pubmed/28373898 http://dx.doi.org/10.1186/s41021-016-0064-6 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Aoki, Yasunobu
Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title_full Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title_fullStr Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title_full_unstemmed Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title_short Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
title_sort evaluation of in vivo mutagenesis for assessing the health risk of air pollutants
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376282/
https://www.ncbi.nlm.nih.gov/pubmed/28373898
http://dx.doi.org/10.1186/s41021-016-0064-6
work_keys_str_mv AT aokiyasunobu evaluationofinvivomutagenesisforassessingthehealthriskofairpollutants