Cargando…

Impact of experimental hypercalcemia on routine haemostasis testing

BACKGROUND: The blood to anticoagulant ratio is standardized according to the physiological calcium concentration in blood samples conventionally used for hemostasis testing. Specifically, one fixed volume of 0.109 mmol/L sodium citrate is added to 9 volumes of blood. Since little is known about the...

Descripción completa

Detalles Bibliográficos
Autores principales: Lippi, Giuseppe, Salvagno, Gian Luca, Brocco, Giorgio, Gelati, Matteo, Danese, Elisa, Favaloro, Emmanuel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376338/
https://www.ncbi.nlm.nih.gov/pubmed/28362859
http://dx.doi.org/10.1371/journal.pone.0175094
Descripción
Sumario:BACKGROUND: The blood to anticoagulant ratio is standardized according to the physiological calcium concentration in blood samples conventionally used for hemostasis testing. Specifically, one fixed volume of 0.109 mmol/L sodium citrate is added to 9 volumes of blood. Since little is known about the impact of hypercalcemia on the calcium-binding capacity of citrate, this study was planned to investigate the effect of experimental hypercalcemia on routine hemostasis testing. METHODS: Fifteen pooled citrated plasmas with matching lithium-heparin pooled plasma from patients with different values of prothrombin time (PT) were divided in three aliquots of 0.6mL each. The first paired aliquots of both citrate and lithium-heparin plasma were supplemented with 60μL of saline, the second paired aliquots with 30μL of saline and 30μL of calcium chloride and the third paired aliquots with 60μL of calcium chloride. Total and ionized calcium was measured in all aliquots of citrate and lithium-heparin plasma, whereas PT, activated partial thromboplastin time (APTT) and fibrinogen were measured in citrate plasma aliquots. RESULTS: Total calcium concentration gradually increased in both lithium-heparin and citrate plasma aliquots 2 and 3 compared to baseline aliquot 1. The concentration of ionized calcium also gradually increased in lithium-heparin plasma aliquots 2 and 3, whereas it remained immeasurable (i.e., <0.10 mmol/L) in all citrate plasma aliquots. No significant differences were observed for values of PT, APTT and fibrinogen in citrate plasma aliquots 2 and 3 compared to the baseline aliquot 1, with a mean bias was always comprised within the desirable quality specifications derived from biological variability data. CONCLUSION: Hypercalcemia, up to severe hypercalcemia does not generate significant bias in results of first-line coagulations tests, so that hypothetical consideration of adjusting citrate-blood ratio is unjustified in hypercalcemic patients.