Cargando…
Prospective identification of hematopoietic lineage choice by deep learning
Differentiation alters molecular properties of stem and progenitor cells, leading to changing shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors, using image patches from brightfield mic...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376497/ https://www.ncbi.nlm.nih.gov/pubmed/28218899 http://dx.doi.org/10.1038/nmeth.4182 |
_version_ | 1782519169908998144 |
---|---|
author | Buggenthin, Felix Buettner, Florian Hoppe, Philipp S Endele, Max Kroiss, Manuel Strasser, Michael Schwarzfischer, Michael Loeffler, Dirk Kokkaliaris, Konstantinos D Hilsenbeck, Oliver Schroeder, Timm Theis, Fabian J Marr, Carsten |
author_facet | Buggenthin, Felix Buettner, Florian Hoppe, Philipp S Endele, Max Kroiss, Manuel Strasser, Michael Schwarzfischer, Michael Loeffler, Dirk Kokkaliaris, Konstantinos D Hilsenbeck, Oliver Schroeder, Timm Theis, Fabian J Marr, Carsten |
author_sort | Buggenthin, Felix |
collection | PubMed |
description | Differentiation alters molecular properties of stem and progenitor cells, leading to changing shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors, using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identifying cells with differentially expressed lineage-specifying genes without molecular labeling. |
format | Online Article Text |
id | pubmed-5376497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-53764972017-08-20 Prospective identification of hematopoietic lineage choice by deep learning Buggenthin, Felix Buettner, Florian Hoppe, Philipp S Endele, Max Kroiss, Manuel Strasser, Michael Schwarzfischer, Michael Loeffler, Dirk Kokkaliaris, Konstantinos D Hilsenbeck, Oliver Schroeder, Timm Theis, Fabian J Marr, Carsten Nat Methods Article Differentiation alters molecular properties of stem and progenitor cells, leading to changing shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors, using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identifying cells with differentially expressed lineage-specifying genes without molecular labeling. 2017-02-20 2017-04 /pmc/articles/PMC5376497/ /pubmed/28218899 http://dx.doi.org/10.1038/nmeth.4182 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Buggenthin, Felix Buettner, Florian Hoppe, Philipp S Endele, Max Kroiss, Manuel Strasser, Michael Schwarzfischer, Michael Loeffler, Dirk Kokkaliaris, Konstantinos D Hilsenbeck, Oliver Schroeder, Timm Theis, Fabian J Marr, Carsten Prospective identification of hematopoietic lineage choice by deep learning |
title | Prospective identification of hematopoietic lineage choice by deep
learning |
title_full | Prospective identification of hematopoietic lineage choice by deep
learning |
title_fullStr | Prospective identification of hematopoietic lineage choice by deep
learning |
title_full_unstemmed | Prospective identification of hematopoietic lineage choice by deep
learning |
title_short | Prospective identification of hematopoietic lineage choice by deep
learning |
title_sort | prospective identification of hematopoietic lineage choice by deep
learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376497/ https://www.ncbi.nlm.nih.gov/pubmed/28218899 http://dx.doi.org/10.1038/nmeth.4182 |
work_keys_str_mv | AT buggenthinfelix prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT buettnerflorian prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT hoppephilipps prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT endelemax prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT kroissmanuel prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT strassermichael prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT schwarzfischermichael prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT loefflerdirk prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT kokkaliariskonstantinosd prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT hilsenbeckoliver prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT schroedertimm prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT theisfabianj prospectiveidentificationofhematopoieticlineagechoicebydeeplearning AT marrcarsten prospectiveidentificationofhematopoieticlineagechoicebydeeplearning |