Cargando…
Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth)
Weed infestations in agricultural systems constitute a serious challenge to agricultural sustainability and food security worldwide. Amaranthus palmeri S. Watson (Palmer amaranth) is one of the most noxious weeds causing significant yield reductions in various crops. The ability to estimate seed via...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376577/ https://www.ncbi.nlm.nih.gov/pubmed/28421101 http://dx.doi.org/10.3389/fpls.2017.00474 |
_version_ | 1782519180956794880 |
---|---|
author | Matzrafi, Maor Herrmann, Ittai Nansen, Christian Kliper, Tom Zait, Yotam Ignat, Timea Siso, Dana Rubin, Baruch Karnieli, Arnon Eizenberg, Hanan |
author_facet | Matzrafi, Maor Herrmann, Ittai Nansen, Christian Kliper, Tom Zait, Yotam Ignat, Timea Siso, Dana Rubin, Baruch Karnieli, Arnon Eizenberg, Hanan |
author_sort | Matzrafi, Maor |
collection | PubMed |
description | Weed infestations in agricultural systems constitute a serious challenge to agricultural sustainability and food security worldwide. Amaranthus palmeri S. Watson (Palmer amaranth) is one of the most noxious weeds causing significant yield reductions in various crops. The ability to estimate seed viability and herbicide susceptibility is a key factor in the development of a long-term management strategy, particularly since the misuse of herbicides is driving the evolution of herbicide response in various weed species. The limitations of most herbicide response studies are that they are conducted retrospectively and that they use in vitro destructive methods. Development of a non-destructive method for the prediction of herbicide response could vastly improve the efficacy of herbicide applications and potentially delay the evolution of herbicide resistance. Here, we propose a toolbox based on hyperspectral technologies and data analyses aimed to predict A. palmeri seed germination and response to the herbicide trifloxysulfuron-methyl. Complementary measurement of leaf physiological parameters, namely, photosynthetic rate, stomatal conductence and photosystem II efficiency, was performed to support the spectral analysis. Plant response to the herbicide was compared to image analysis estimates using mean gray value and area fraction variables. Hyperspectral reflectance profiles were used to determine seed germination and to classify herbicide response through examination of plant leaves. Using hyperspectral data, we have successfully distinguished between germinating and non-germinating seeds, hyperspectral classification of seeds showed accuracy of 81.9 and 76.4%, respectively. Sensitive and resistant plants were identified with high degrees of accuracy (88.5 and 90.9%, respectively) from leaf hyperspectral reflectance profiles acquired prior to herbicide application. A correlation between leaf physiological parameters and herbicide response (sensitivity/resistance) was also demonstrated. We demonstrated that hyperspectral reflectance analyses can provide reliable information about seed germination and levels of susceptibility in A. palmeri. The use of reflectance-based analyses can help to better understand the invasiveness of A. palmeri, and thus facilitate the development of targeted control methods. It also has enormous potential for impacting environmental management in that it can be used to prevent ineffective herbicide applications. It also has potential for use in mapping tempo-spatial population dynamics in agro-ecological landscapes. |
format | Online Article Text |
id | pubmed-5376577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53765772017-04-18 Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) Matzrafi, Maor Herrmann, Ittai Nansen, Christian Kliper, Tom Zait, Yotam Ignat, Timea Siso, Dana Rubin, Baruch Karnieli, Arnon Eizenberg, Hanan Front Plant Sci Plant Science Weed infestations in agricultural systems constitute a serious challenge to agricultural sustainability and food security worldwide. Amaranthus palmeri S. Watson (Palmer amaranth) is one of the most noxious weeds causing significant yield reductions in various crops. The ability to estimate seed viability and herbicide susceptibility is a key factor in the development of a long-term management strategy, particularly since the misuse of herbicides is driving the evolution of herbicide response in various weed species. The limitations of most herbicide response studies are that they are conducted retrospectively and that they use in vitro destructive methods. Development of a non-destructive method for the prediction of herbicide response could vastly improve the efficacy of herbicide applications and potentially delay the evolution of herbicide resistance. Here, we propose a toolbox based on hyperspectral technologies and data analyses aimed to predict A. palmeri seed germination and response to the herbicide trifloxysulfuron-methyl. Complementary measurement of leaf physiological parameters, namely, photosynthetic rate, stomatal conductence and photosystem II efficiency, was performed to support the spectral analysis. Plant response to the herbicide was compared to image analysis estimates using mean gray value and area fraction variables. Hyperspectral reflectance profiles were used to determine seed germination and to classify herbicide response through examination of plant leaves. Using hyperspectral data, we have successfully distinguished between germinating and non-germinating seeds, hyperspectral classification of seeds showed accuracy of 81.9 and 76.4%, respectively. Sensitive and resistant plants were identified with high degrees of accuracy (88.5 and 90.9%, respectively) from leaf hyperspectral reflectance profiles acquired prior to herbicide application. A correlation between leaf physiological parameters and herbicide response (sensitivity/resistance) was also demonstrated. We demonstrated that hyperspectral reflectance analyses can provide reliable information about seed germination and levels of susceptibility in A. palmeri. The use of reflectance-based analyses can help to better understand the invasiveness of A. palmeri, and thus facilitate the development of targeted control methods. It also has enormous potential for impacting environmental management in that it can be used to prevent ineffective herbicide applications. It also has potential for use in mapping tempo-spatial population dynamics in agro-ecological landscapes. Frontiers Media S.A. 2017-04-03 /pmc/articles/PMC5376577/ /pubmed/28421101 http://dx.doi.org/10.3389/fpls.2017.00474 Text en Copyright © 2017 Matzrafi, Herrmann, Nansen, Kliper, Zait, Ignat, Siso, Rubin, Karnieli and Eizenberg. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Matzrafi, Maor Herrmann, Ittai Nansen, Christian Kliper, Tom Zait, Yotam Ignat, Timea Siso, Dana Rubin, Baruch Karnieli, Arnon Eizenberg, Hanan Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title | Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title_full | Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title_fullStr | Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title_full_unstemmed | Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title_short | Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth) |
title_sort | hyperspectral technologies for assessing seed germination and trifloxysulfuron-methyl response in amaranthus palmeri (palmer amaranth) |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376577/ https://www.ncbi.nlm.nih.gov/pubmed/28421101 http://dx.doi.org/10.3389/fpls.2017.00474 |
work_keys_str_mv | AT matzrafimaor hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT herrmannittai hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT nansenchristian hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT klipertom hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT zaityotam hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT ignattimea hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT sisodana hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT rubinbaruch hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT karnieliarnon hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth AT eizenberghanan hyperspectraltechnologiesforassessingseedgerminationandtrifloxysulfuronmethylresponseinamaranthuspalmeripalmeramaranth |