Cargando…
Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals
With the development of Brain Machine Interface (BMI) systems, people with motor disabilities are able to control external devices to help them restore movement abilities. Longitudinal validation of these systems is critical not only to assess long-term performance reliability but also to investigat...
Autores principales: | Zhang, Yuhang, Prasad, Saurabh, Kilicarslan, Atilla, Contreras-Vidal, Jose L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376592/ https://www.ncbi.nlm.nih.gov/pubmed/28420954 http://dx.doi.org/10.3389/fnins.2017.00170 |
Ejemplares similares
-
Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution
por: Bulea, Thomas C., et al.
Publicado: (2014) -
Single-trial classification of gait and point movement preparation from human EEG
por: Velu, Priya D., et al.
Publicado: (2013) -
An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding
por: Nakagome, Sho, et al.
Publicado: (2020) -
Neural decoding of expressive human movement from scalp electroencephalography (EEG)
por: Cruz-Garza, Jesus G., et al.
Publicado: (2014) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014)