Cargando…
A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii
BACKGROUND: Random insertional mutagenesis of Chlamydomonas reinhardtii using drug resistance cassettes has contributed to the generation of tens of thousands of transformants in dozens of labs around the world. In many instances these insertional mutants have helped elucidate the genetic basis of v...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376698/ https://www.ncbi.nlm.nih.gov/pubmed/28392829 http://dx.doi.org/10.1186/s13007-017-0170-x |
_version_ | 1782519201996472320 |
---|---|
author | Pollock, Steve V. Mukherjee, Bratati Bajsa-Hirschel, Joanna Machingura, Marylou C. Mukherjee, Ananya Grossman, Arthur R. Moroney, James V. |
author_facet | Pollock, Steve V. Mukherjee, Bratati Bajsa-Hirschel, Joanna Machingura, Marylou C. Mukherjee, Ananya Grossman, Arthur R. Moroney, James V. |
author_sort | Pollock, Steve V. |
collection | PubMed |
description | BACKGROUND: Random insertional mutagenesis of Chlamydomonas reinhardtii using drug resistance cassettes has contributed to the generation of tens of thousands of transformants in dozens of labs around the world. In many instances these insertional mutants have helped elucidate the genetic basis of various physiological processes in this model organism. Unfortunately, the insertion sites of many interesting mutants are never defined due to experimental difficulties in establishing the location of the inserted cassette in the Chlamydomonas genome. It is fairly common that several months, or even years of work are conducted with no result. Here we describe a robust method to identify the location of the inserted DNA cassette in the Chlamydomonas genome. RESULTS: Insertional mutants were generated using a DNA cassette that confers paromomycin resistance. This protocol identified the cassette insertion site for greater than 80% of the transformants. In the majority of cases the insertion event was found to be simple, without large deletions of flanking genomic DNA. Multiple insertions were observed in less than 10% of recovered transformants. CONCLUSION: The method is quick, relatively inexpensive and does not require any special equipment beyond an electroporator. The protocol was tailored to ensure that the sequence of the Chlamydomonas genomic DNA flanking the random insertion is consistently obtained in a high proportion of transformants. A detailed protocol is presented to aid in the experimental design and implementation of mutant screens in Chlamydomonas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13007-017-0170-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5376698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53766982017-04-07 A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii Pollock, Steve V. Mukherjee, Bratati Bajsa-Hirschel, Joanna Machingura, Marylou C. Mukherjee, Ananya Grossman, Arthur R. Moroney, James V. Plant Methods Methodology BACKGROUND: Random insertional mutagenesis of Chlamydomonas reinhardtii using drug resistance cassettes has contributed to the generation of tens of thousands of transformants in dozens of labs around the world. In many instances these insertional mutants have helped elucidate the genetic basis of various physiological processes in this model organism. Unfortunately, the insertion sites of many interesting mutants are never defined due to experimental difficulties in establishing the location of the inserted cassette in the Chlamydomonas genome. It is fairly common that several months, or even years of work are conducted with no result. Here we describe a robust method to identify the location of the inserted DNA cassette in the Chlamydomonas genome. RESULTS: Insertional mutants were generated using a DNA cassette that confers paromomycin resistance. This protocol identified the cassette insertion site for greater than 80% of the transformants. In the majority of cases the insertion event was found to be simple, without large deletions of flanking genomic DNA. Multiple insertions were observed in less than 10% of recovered transformants. CONCLUSION: The method is quick, relatively inexpensive and does not require any special equipment beyond an electroporator. The protocol was tailored to ensure that the sequence of the Chlamydomonas genomic DNA flanking the random insertion is consistently obtained in a high proportion of transformants. A detailed protocol is presented to aid in the experimental design and implementation of mutant screens in Chlamydomonas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13007-017-0170-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-04-03 /pmc/articles/PMC5376698/ /pubmed/28392829 http://dx.doi.org/10.1186/s13007-017-0170-x Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Pollock, Steve V. Mukherjee, Bratati Bajsa-Hirschel, Joanna Machingura, Marylou C. Mukherjee, Ananya Grossman, Arthur R. Moroney, James V. A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title | A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title_full | A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title_fullStr | A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title_full_unstemmed | A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title_short | A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii |
title_sort | robust protocol for efficient generation, and genomic characterization of insertional mutants of chlamydomonas reinhardtii |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376698/ https://www.ncbi.nlm.nih.gov/pubmed/28392829 http://dx.doi.org/10.1186/s13007-017-0170-x |
work_keys_str_mv | AT pollockstevev arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT mukherjeebratati arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT bajsahirscheljoanna arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT machinguramarylouc arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT mukherjeeananya arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT grossmanarthurr arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT moroneyjamesv arobustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT pollockstevev robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT mukherjeebratati robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT bajsahirscheljoanna robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT machinguramarylouc robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT mukherjeeananya robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT grossmanarthurr robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii AT moroneyjamesv robustprotocolforefficientgenerationandgenomiccharacterizationofinsertionalmutantsofchlamydomonasreinhardtii |