Cargando…
PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length
Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time‐keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcriptio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376961/ https://www.ncbi.nlm.nih.gov/pubmed/28270524 http://dx.doi.org/10.15252/embj.201693907 |
_version_ | 1782519224242012160 |
---|---|
author | Hayama, Ryosuke Sarid‐Krebs, Liron Richter, René Fernández, Virginia Jang, Seonghoe Coupland, George |
author_facet | Hayama, Ryosuke Sarid‐Krebs, Liron Richter, René Fernández, Virginia Jang, Seonghoe Coupland, George |
author_sort | Hayama, Ryosuke |
collection | PubMed |
description | Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time‐keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR‐mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs. |
format | Online Article Text |
id | pubmed-5376961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53769612017-04-05 PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length Hayama, Ryosuke Sarid‐Krebs, Liron Richter, René Fernández, Virginia Jang, Seonghoe Coupland, George EMBO J Articles Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time‐keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR‐mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs. John Wiley and Sons Inc. 2017-03-07 2017-04-03 /pmc/articles/PMC5376961/ /pubmed/28270524 http://dx.doi.org/10.15252/embj.201693907 Text en © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Hayama, Ryosuke Sarid‐Krebs, Liron Richter, René Fernández, Virginia Jang, Seonghoe Coupland, George PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title | PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title_full | PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title_fullStr | PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title_full_unstemmed | PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title_short | PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length |
title_sort | pseudo response regulators stabilize constans protein to promote flowering in response to day length |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376961/ https://www.ncbi.nlm.nih.gov/pubmed/28270524 http://dx.doi.org/10.15252/embj.201693907 |
work_keys_str_mv | AT hayamaryosuke pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength AT saridkrebsliron pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength AT richterrene pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength AT fernandezvirginia pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength AT jangseonghoe pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength AT couplandgeorge pseudoresponseregulatorsstabilizeconstansproteintopromotefloweringinresponsetodaylength |