Cargando…
Synthesis of Zn(II)-Doped Magnetite Leaf-Like Nanorings for Efficient Electromagnetic Wave Absorption
We report the thermal annealing-induced formation of ring-like structure of Zn(II)-doped magnetite from iron alkoxide leaf-like nanoplate precusor. The phase, structure and morphology of magnetite nanorings were comprehensively characterized by powder X-ray diffraction, X-ray photoelectron spectrosc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377309/ https://www.ncbi.nlm.nih.gov/pubmed/28368010 http://dx.doi.org/10.1038/srep45480 |
Sumario: | We report the thermal annealing-induced formation of ring-like structure of Zn(II)-doped magnetite from iron alkoxide leaf-like nanoplate precusor. The phase, structure and morphology of magnetite nanorings were comprehensively characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, and transmission electron microscope. The obtained Zn(II)-doped magnetite nanorings are of 13–20 nm in edge width, 70–110 nm in short axis length and 100–150 nm in long axis length. The growth mechanism was possibly due to a combined effect of decomposition of the organic component and diffusion growth. Zn(II)-doped magnetite nanorings delivered saturation magnetization of 66.4 emu/g and coercivity of 33 Oe at room temperature. In addition, the coatings containing Zn(II)-doped magnetite nanorings as fillers exhibit excellent microwave absorption properties with a maximum reflection loss of −40.4 dB and wide effective absorbing band obtained in coating with thin thickness of 1.50 mm. |
---|