Cargando…

miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway

The current study aimed to investigate the potential role of miR-9 in the inhibition of ovarian cancer progression through the stromal cell-derived factor-1 (SDF-1)/ C-X-C chemokine receptor type 4 (CXCR4) pathway and to provide a theoretical basis for the diagnosis and treatment of ovarian cancer....

Descripción completa

Detalles Bibliográficos
Autores principales: He, Lin, Zhang, Li, Wang, Mengfei, Wang, Wenrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377313/
https://www.ncbi.nlm.nih.gov/pubmed/28413458
http://dx.doi.org/10.3892/etm.2017.4118
Descripción
Sumario:The current study aimed to investigate the potential role of miR-9 in the inhibition of ovarian cancer progression through the stromal cell-derived factor-1 (SDF-1)/ C-X-C chemokine receptor type 4 (CXCR4) pathway and to provide a theoretical basis for the diagnosis and treatment of ovarian cancer. Human ovarian cancer OVCAR-3 cells were transfected with miR-9 short hairpin RNA (shRNA). The effect of miR-9 on the mRNA expression levels of CXCR4 were analyzed using reverse transcription-quantitative polymerase chain reaction. The effects of miR-9 on OVCAR-3 cell proliferation, invasion and apoptotic ability were detected using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay, Matrigel method, and Annexin V-fluorescein isothiocyanate flow cytometry, respectively. In addition, expression levels of SDF-1/CXCR4 pathway associated proteins were determined by western blot analysis. mRNA expression levels of CXCR4 in OVCAR-3 cells transfected with miR-9 shRNA was significantly downregulated compared with the blank and control groups (P<0.05). Furthermore, compared with the two control groups, the current results revealed that miR-9 inhibited cell proliferation, suppressed invasive ability and induced cell apoptosis in OVCAR-3 cells (P<0.05). Finally, it was observed that miR-9 functioned as a tumor inhibitor through the SDF-1/CXCR4 pathway by suppressing the expression levels of extracellular signal-regulated kinase 1 (ERK1), ERK2 and matrix metalloproteinase-9 proteins. The present study suggested that miR-9 may function as a promising tumor inhibitor for ovarian cancer through targeting the SDF-1/CXCR4 pathway.