Cargando…

High performance organic transistor active-matrix driver developed on paper substrate

The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Boyu, Ren, Xiaochen, Wang, Zongrong, Wang, Xinyu, Roberts, Robert C., Chan, Paddy K. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377355/
https://www.ncbi.nlm.nih.gov/pubmed/25234244
http://dx.doi.org/10.1038/srep06430
Descripción
Sumario:The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm(2)V(−1)s(−1) and 10(9) respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.