Cargando…

Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca(2+) spike

Dendritic Ca(2+) spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca(2+) activity of apical dendrite participates in the action potential (A...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Guosheng, Wang, Jiang, Wei, Xile, Deng, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377381/
https://www.ncbi.nlm.nih.gov/pubmed/28367964
http://dx.doi.org/10.1038/srep45684
Descripción
Sumario:Dendritic Ca(2+) spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca(2+) activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca(2+) spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca(2+) spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca(2+) spike and output APs, which could contribute to mechanically interpreting how dendritic Ca(2+) activity participates in the simple computations of pyramidal neuron.