Cargando…
Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates
The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378178/ https://www.ncbi.nlm.nih.gov/pubmed/28073918 http://dx.doi.org/10.1101/gr.213256.116 |
_version_ | 1782519406227619840 |
---|---|
author | Olm, Matthew R. Brown, Christopher T. Brooks, Brandon Firek, Brian Baker, Robyn Burstein, David Soenjoyo, Karina Thomas, Brian C. Morowitz, Michael Banfield, Jillian F. |
author_facet | Olm, Matthew R. Brown, Christopher T. Brooks, Brandon Firek, Brian Baker, Robyn Burstein, David Soenjoyo, Karina Thomas, Brian C. Morowitz, Michael Banfield, Jillian F. |
author_sort | Olm, Matthew R. |
collection | PubMed |
description | The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. |
format | Online Article Text |
id | pubmed-5378178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-53781782017-04-12 Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates Olm, Matthew R. Brown, Christopher T. Brooks, Brandon Firek, Brian Baker, Robyn Burstein, David Soenjoyo, Karina Thomas, Brian C. Morowitz, Michael Banfield, Jillian F. Genome Res Research The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. Cold Spring Harbor Laboratory Press 2017-04 /pmc/articles/PMC5378178/ /pubmed/28073918 http://dx.doi.org/10.1101/gr.213256.116 Text en © 2017 Olm et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Olm, Matthew R. Brown, Christopher T. Brooks, Brandon Firek, Brian Baker, Robyn Burstein, David Soenjoyo, Karina Thomas, Brian C. Morowitz, Michael Banfield, Jillian F. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title | Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title_full | Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title_fullStr | Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title_full_unstemmed | Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title_short | Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
title_sort | identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378178/ https://www.ncbi.nlm.nih.gov/pubmed/28073918 http://dx.doi.org/10.1101/gr.213256.116 |
work_keys_str_mv | AT olmmatthewr identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT brownchristophert identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT brooksbrandon identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT firekbrian identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT bakerrobyn identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT bursteindavid identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT soenjoyokarina identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT thomasbrianc identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT morowitzmichael identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates AT banfieldjillianf identicalbacterialpopulationscolonizeprematureinfantgutskinandoralmicrobiomesandexhibitdifferentinsitugrowthrates |